

Mark Z. Jacobson
Atmosphere/Energy Program
Stanford University

J. G. Swanepoel/Dreamstime.com

St. Louis University
St. Louis, Missouri
April 13, 2016

Wind farm near Middelgrunden, Denmark

What's the Problem? Why act Quickly?

Fossil-fuel + biofuel air pollution cause 4-7 mil. premature air pollution deaths/yr worldwide costing >3% of world GDP

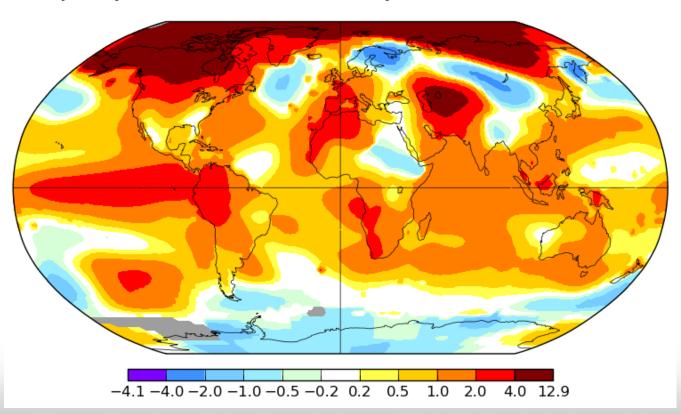
Global warming due to world emissions will cost ~\$16-20 trillion/year by 2050.

Increasing fossil energy use increases energy prices→ economic, social, political instability

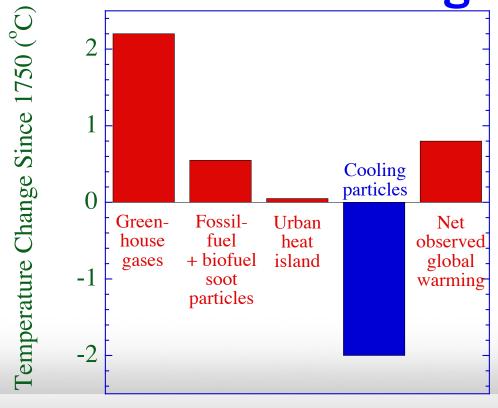
Drastic problems require immediate solutions.

Lung of LA Teenage Nonsmoker in 1970s;

SCAQMD/CARB



Jan 2016 Global Warming 1.1 K=2 F


January 2016

L-OTI(°C) Anomaly vs 1951-1980

1.13

Primary Contributors to Net Observed Global Warming

Wind, Water, Solar (WWS) All-Sector Solutions to Energy and Job Security, Air Pollution, Global Warming

ELECTRICITY	TRANSPORTATION	HEATING/COOLING	INDUSTRY
Wind Solar PV/CSP Geothermal Hydro Tidal/Wave	, ,	Electric heat pumps Electric resistance Solar water preheat	Electric resistance Electric arc furnaces Induction furnaces Dielectric heating Hydrogen

Types of Storage for 100% WWS System

ELECTRICITY	HEATING/COOLING	OTHER
CSP with storage	Water	Hydrogen
Pumped hydro	Ice	Demand-response
Existing hydroelectric	Rocks in soil	

Seasonal Heat Storage in Rocks, Okotoks, Canada

Why Not Natural Gas?

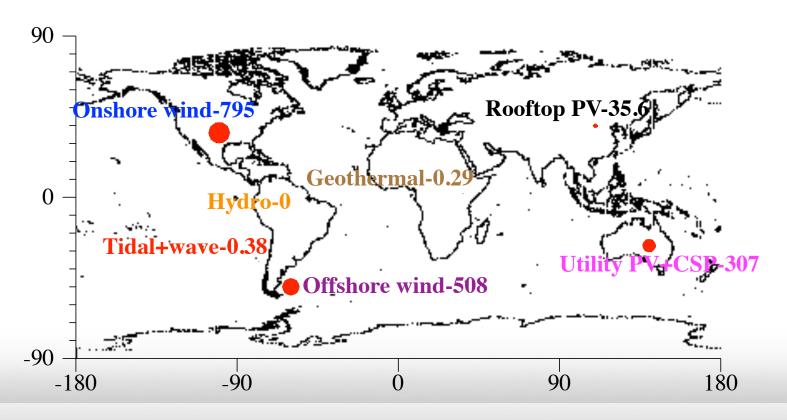
Gas wells in Upper Green River Valley, WY: Ecoflight.org

50-70 times more CO₂ and air pollution per kWh than wind

Methane from natural gas a main contributor to Arctic ice loss.

Natural gas mining, transport, and use causes 5000 premature mortalities/year in the U.S.

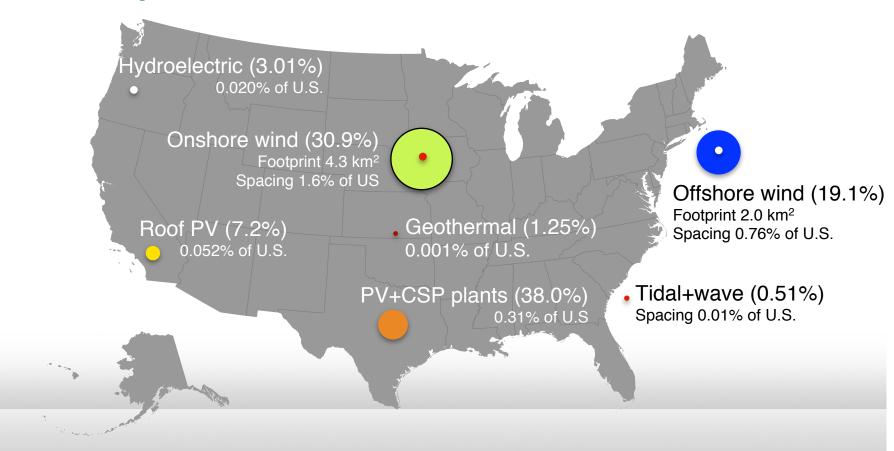
Hydrofracking causes land and water supply degradation and enhanced methane leaks.

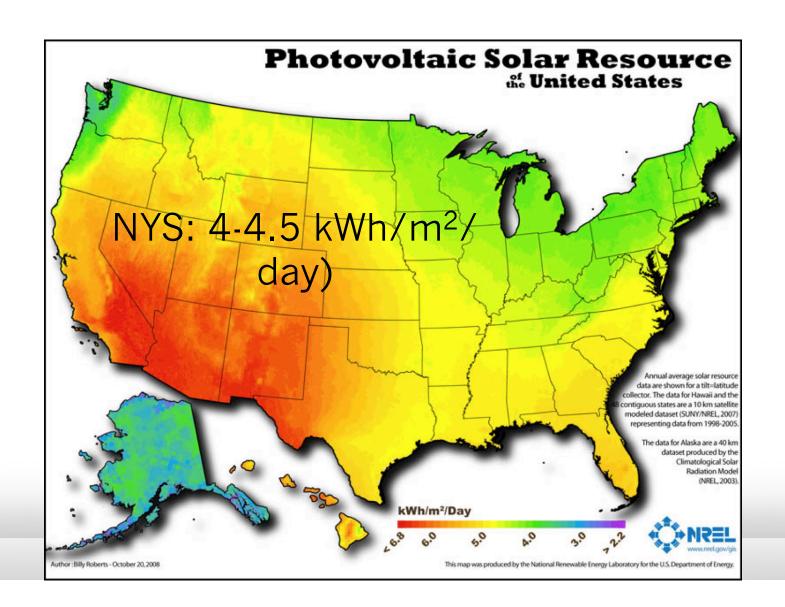

End-Use Power Demand For All Energy Purposes

Year and Fuel Type	139- Countries	Missouri
2012 (TW)	12.0	0.043
2050 with current fuels (TW)	19.4	0.043
2050 WWS (TW)	11.8	0.026
2050 Reduction w/ WWS (%)	39	40.4

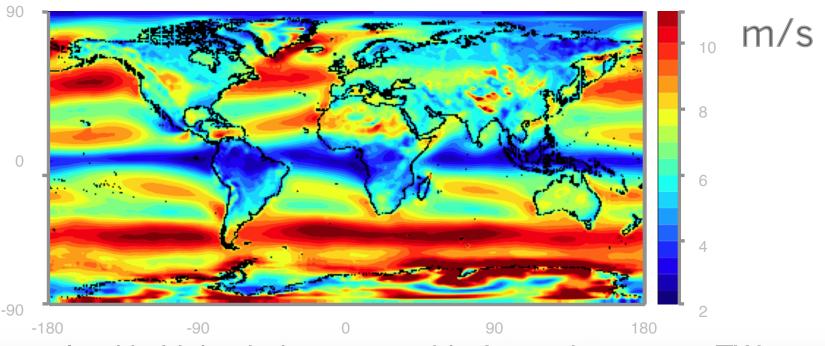
Number of New Plants to Power 139 Countries All Purposes

TECHNOLOGY	PCT SUPPLY 2050	NUMBER
5-MW onshore wind turbines	19.8%	1,192,000
5-MW offshore wind turbines	12.9	762,000
5-kW Res. roof PV systems	5.55	653 million
100-kW com/gov roof PV syst	tems 5.97	35.3 million
50-MW Solar PV plants	42.3	497,000
100-MW CSP plants	7.67	15,500
100-MW geothermal plants	0.74	840
1300-MW hydro plants	4.38	0
1-MW tidal turbines	0.07	32,000
0.75-MW wave devices	0.72	496,000
	100%	

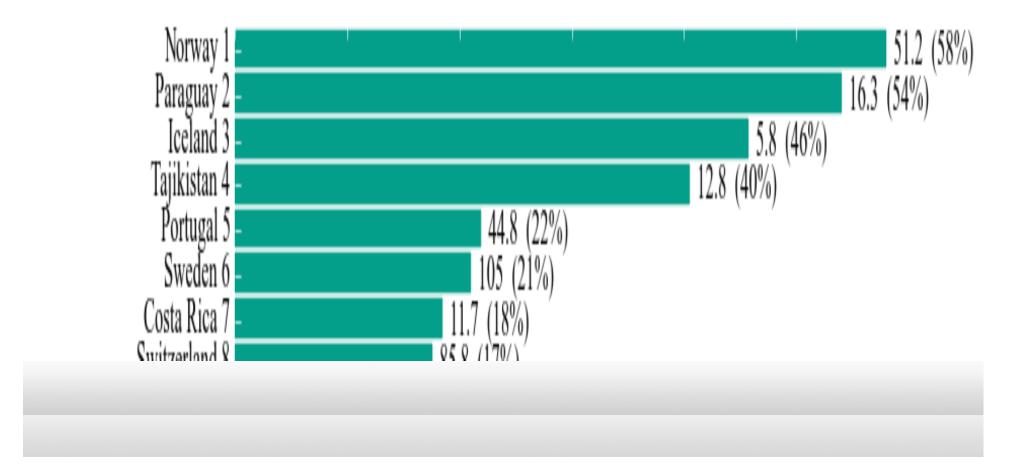

Area (Thousands of km²) Beyond 2014 Installations to Power 100% of 139 Countries for all Purposes w/ WWS in 2050



Number of New Plants to Power Missouri for All Purposes


TECHNOLOGY	PCT SUPPLY 2050	NUMBER	
5-MW onshore wind turbines	60%	8,000	
5-MW offshore wind turbines	0	0	
5-kW Res. roof PV systems	5.1	1.65 million	
100-kW com/gov roof PV sys	tems 4.4	64,000	
50-MW Solar PV plants	24.3	600	
100-MW CSP plants	5.0	30	
100-MW geothermal plants	0	0	
1300-MW hydro plants	1.2	0	
1-MW tidal turbines	0	0	
0.75-MW wave devices	0	0	
	100%		

Additional Area Needed to Power 100% of 50 States for all Purposes With Wind, Water, & Solar in 2050

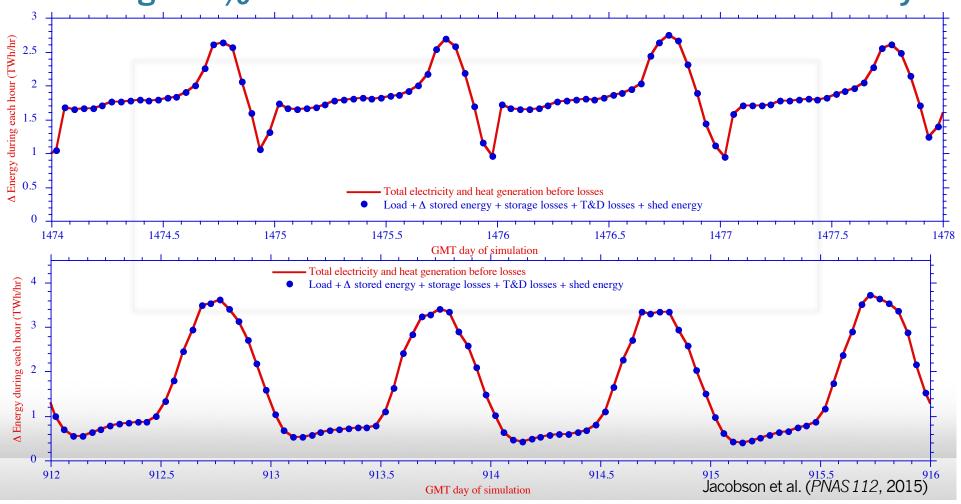


World Wind Speeds at 100m



All wind over land in high-wind areas outside Antarctica ~70-80 TW = ~5-6 times world end-use WWS power demand 2050 of 13.4 TW

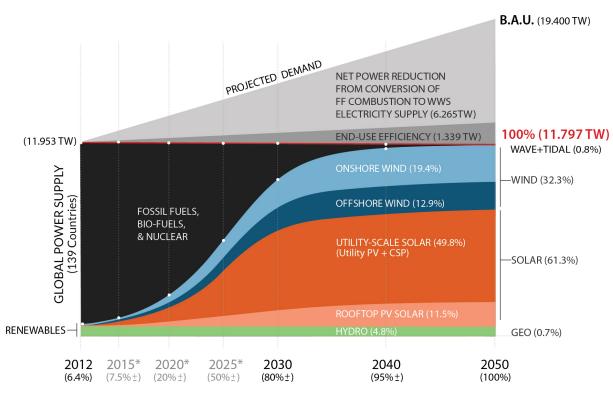
% of 2050 All-Sector WWS Already Installed


Matching 100% 2050-2055 U.S. Load With WWS for 6 Years

Red = Energy supply
Blue = Energy demand + change of storage + losses

Jacobson et al. (PNAS 112, 2015)

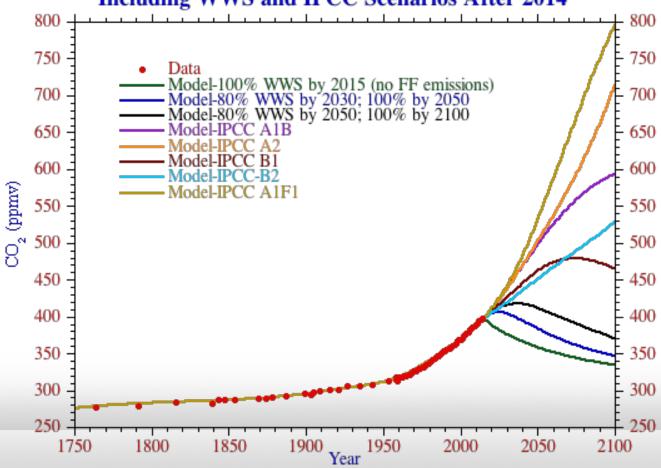
Matching 100% U.S. Load With WWS on Two Sets of Four Days



2015 U.S. Unsubsidized Costs of Energy (¢/kWh)

Wind onshore Wind offshore Geothermal Hydroelectric CSP with 14 hr storage* Utility-scale solar PV Community rooftop PV	3.2 11 8.2 4 9 5.0 7.8	to 7.7 to 19.4 to 11.7 to 6 to 13.5 to 7.0 to 13.6
Residential rooftop PV Gas combined cycle Gas peaking Advanced pulverized coal Nuclear	18.45.216.56.59.7	to 30.0 to 7.8 to 21.8 to 15.0 to 13.6

Lazard (2015); *Solar Reserve (2016)


Timeline for 139-Country Transition to WWS

Projected Energy Supply & Demand, 139 Countries

⊚ ○ ○ Solutions Project, 2015

CO2 From Siple Ice Core (1750-1953) / Mauna Loa (1959-2014) vs. CO2 From GATOR-GCMOM Model (1750-2100), Including WWS and IPCC Scenarios After 2014

House Resolution 540

Expressing the sense of the House of Representatives that the policies of the United States should support a transition to near zero greenhouse gas emissions, 100 percent clean renewable energy, infrastructure modernization, green jobs, full employment, a sustainable economy, fair wages, affordable energy, expanding the middle class, and ending poverty to promote national economic competitiveness and national security and for the purpose of avoiding adverse impacts of a changing climate.

Summary-Converting 139 Countries to 100% WWS

- → Reduces 2050 139-country BAU power demand by ~39%
- → Eliminates ~4-7 million premature air pollution deaths per year (saving ~\$25 trillion/yr ~7.9% of world GDP)
- → Eliminates up to ~\$17 trillion/yr global climate costs 2050
- → Each person saves \$170/yr fuel costs; \$4800/yr health+climate costs
- →WWS w/storage+DRM gives 100% reliability @ ~11-12 ¢/kWh in US
- **→Creates 22 million more jobs than are lost**
- → Requires only 0.29% of land for footprint; 0.66% for spacing
- → Makes countries energy independent, reducing international conflict
- → Creates distributed power, reducing terrorism/catastrophic risk
- → Reduces energy poverty of up to 4 billion people worldwide

Barriers: up-front costs, transmission needs, lobbying, politics.

Materials are not limits

Papers / Graphics

Articles and data

web.stanford.edu/group/efmh/jacobson/Articles/I/

WWS-50-USState-plans.html

Infographic maps

www.thesolutionsproject.org

100.org